2016-06-15  math  quiz 

0÷0について

$0\div0$の値は何でしょうか。

いま、 $$ 0\div0=A \qquad (1) $$ という$A$についての方程式(1)と、 $$ 0=0\times A \qquad (2) $$ という$A$についての方程式(2)を考えましょう。

もしも、割り算を掛け算の逆演算として考えるなら、

ということになります。

ところが、 どんな数$A$に対しても、 $$ 0=0\times A \qquad (2) $$ は成り立ちますから、 どんな数$A$に対しても、 $$ 0\div0=A \qquad (1) $$ が成り立たなければ困るということになります。

したがって、割り算を掛け算の逆演算として考える限り、 もしも$0\div0$が何か値を持つならば、 その値は「どんな数でもいい」ということになり、 $0 \div 0$の値は何かひとつの数には定まりません。

そのため、 通常の数学では$0\div0$の値を定義していません。 $0\div0$は「値を考えるのが無意味な式」といえます。 $0\div0$の値は何かと問われたら「定義されていません」や「未定義です」というのが正しい答えです。

余談

もしも、以上で述べた前提を考慮しないでもいいなら、 $0\div0$を好きなように「定義」すること自体は可能です。 たとえば、割り算を掛け算の逆演算とは見なさないことにして$0\div0$の値を適当な数に「定義」することや、 $0\div0$の答えは数ではない何かとして「定義」することは自由にできます。 しかし、そこから先の理論は(仮に理論ができたとしても)通常の数学とは異なるものです。

 2016-06-15  math  quiz